# Theory of Magnon Transport and Magnetic Sensing in Magnetic Insulator Heterostructures

Tianyi Zhang(张天乙)

Xiufeng Han(韩秀峰)

Institute of physics, CAS 2024/10/12

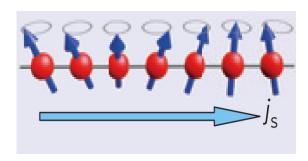
# **Contents**

# 1. Introduction

# 2. Work Summary

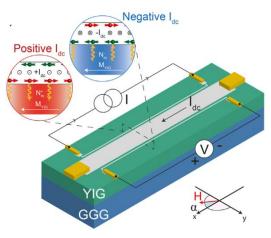
- **1** Theory of Magnon Transport in Magnetic Insulator Heterostructures
- **②** Theory of Magnetic Sensing in Magnetic Insulator Heterostructures

# 3. Summary


**1** Full quantum theory for magnon transport in two-sublattice magnetic insulators and magnon junctions - **Background** 

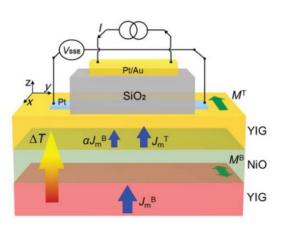
#### **Motivation:**

Propose a fully quantum mechanical theory for the transport of magnons in twosublattice magnetic insulators


# Magnon:

Elementary excitation in magnetic system

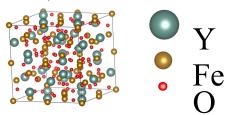


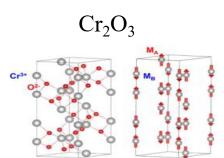

Chumak, et al, Nat. Phys. 11, 453 (2015)

## **Electronic**



Cornelissen, et al, PRL, 120, 097702 (2018)


#### **Thermal**




Guo, et al, PRB, 98, 134426 (2018)

# Magnonic experiment system:

YIG (Yttrium Iron Garnet)

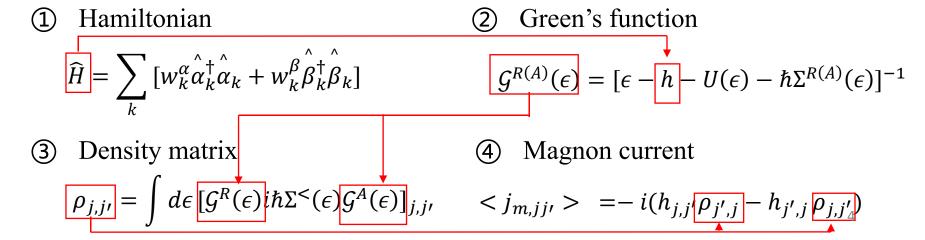






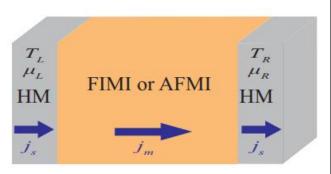
## **Method**

# 1. Second quantization

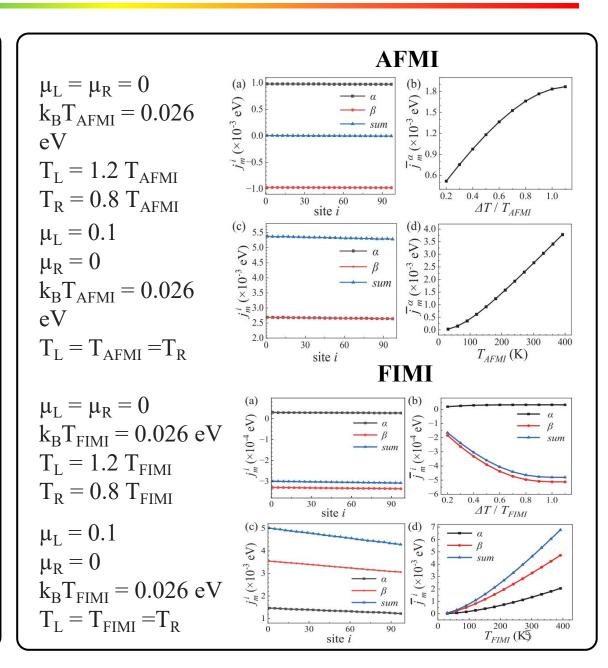

Hamiltonian of two-sublattice magnetic insulators:

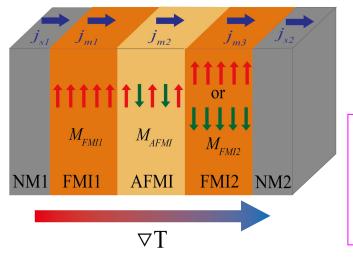
$$\widehat{H} = -J_{AB} \sum_{\langle i,m \rangle} \widehat{\boldsymbol{S}}_i \cdot \widehat{\boldsymbol{S}}_m - J_A \sum_{\langle i,j \rangle} \widehat{\boldsymbol{S}}_i \cdot \widehat{\boldsymbol{S}}_j - J_B \sum_{\langle m,n \rangle} \widehat{\boldsymbol{S}}_m \cdot \widehat{\boldsymbol{S}}_n - h_{\text{ext}} \left( \sum_i \mu_A \widehat{\boldsymbol{S}}_i^z + \sum_m \mu_B \widehat{\boldsymbol{S}}_m^z \right)$$

Using Holstein - Primakoff (H-P), Bogoliubov and Fourier transformation


$$\Rightarrow \widehat{H} = \sum_{k} \left[ w_k^{\alpha} \widehat{\alpha}_k^{\dagger} \widehat{\alpha}_k + w_k^{\beta} \widehat{\beta}_k^{\dagger} \widehat{\beta}_k \right]$$
 Two independent magnon mode!

# 2. Non-equilibrium Green's function





## Results

#### Model



- In this setup, the FIMI or AFMI is connected to two HMs with temperatures  $T_R$ ,  $T_L$  and spin chemical potentials  $\mu_L$ ,  $\mu_R$ .
- The magnon current is driven by the difference of temperature or spin chemical potential between two HMs.





#### Parameters:

$$\begin{aligned} k_B T_{NM1} &= 0.026 \text{ eV}, \ T_{FMI1} = 0.9 \ T_{NM1}, \\ T_{AFMI} &= 0.8 \ T_{NM1}, \ T_{FMI2} = 0.7 \ T_{NM1}, \ T_{NM2} = 0.6 \ T_{NM1} \end{aligned}$$

Parallel state:  $J_{m,\uparrow\uparrow} = 6.53 \times 10^{-4} \text{ eV}$ 

Antiparallel state:  $J_{m,\uparrow\downarrow} = 4.79 \times 10^{-7} \text{ eV}$ 

**Magnon junction ratio MJR** =  $\frac{J_{m,\uparrow\uparrow}-J_{m,\uparrow\downarrow}}{J_{m,\uparrow\uparrow}+J_{m,\uparrow\downarrow}} = 99.85\%$ 

#### Conclusion:

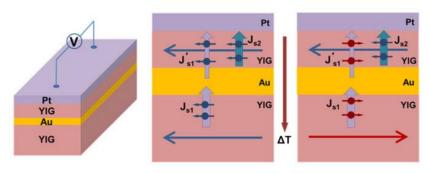
- Using H-P transformation, Fourier transformer and non-equilibrium Green's function, we proposed a full quantum theory for magnon transport in two-sublattice magnetic insulators and magnon junctions.
- Our results can be used to calculate the magnon current induced by electron current and temperature gradient.

## **Contents**

# 1. Introduction

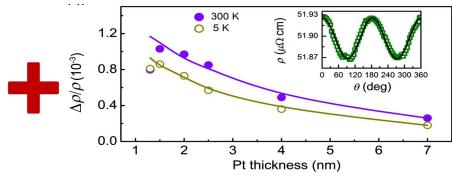
# 2. Work Summary

- **1** Theory of Magnon Transport in Magnetic Insulator Heterostructures
- **②** Theory of Magnetic Sensing in Magnetic Insulator Heterostructures


# 3. Summary

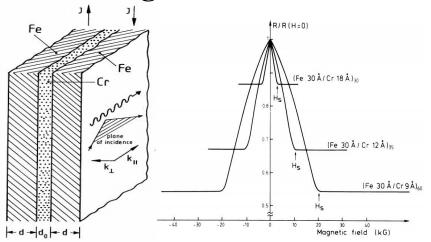
2 In-Plane Magnon Valve Effect in Magnetic Insulator/Heavy Metal/ Magnetic Insulator Device - Background

### **Motivation:**


Use magnon valve as a magnetic sensor.

# Magnon valve




Wu, et al. PRL, 120, 097205 (2018)

# Magnetic proximity effect



Lu, et al. PRL 110, 147207 (2013)

# **Giant Magnetoresistance effect**



Binasch, et al. PRB, 39, 4828 (1989) Baibich, et al. PRL, 61, 2472 (1988)

# **Advantages:**

- 1. Low coercive force (~ 1 Oe), high sensitivity.
- 2. Wide intrinsic frequency range (GHz to THz) of YIG, improved high requency response.

## **Method**

# Coherent potential approximation

Hamiltonian of the Pt layer electronic system:

$$\hat{H} = \sum_{s,i} \varepsilon_{is} \hat{a}_{is}^{\dagger} \hat{a}_{is} + \sum_{s,\langle i,j\rangle} t_{ijs} \hat{a}_{is}^{\dagger} \hat{a}_{js}$$

The on-site energy at the n-th layer  $\varepsilon_{ns}$  takes values  $\varepsilon_{ns}^m$  and  $\varepsilon_{ns}^{unm}$  with probabilities  $x_n$  and  $y_n = 1 - x_n$  respectively.

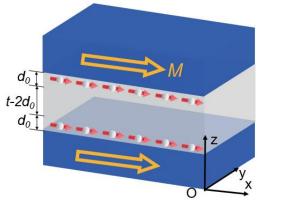
The conductance of Pt

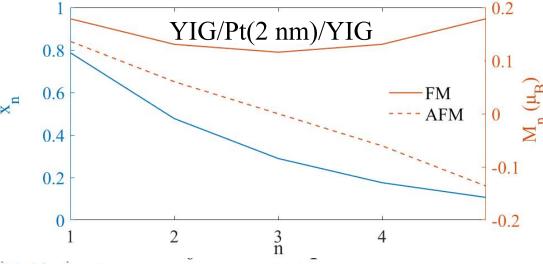
$$\sigma_{xx}^{MPE} = \sum_{m,n,s} \gamma_{m,n,s} \frac{\tau_{m,n,s}}{\Delta_{n,s} + \Delta_{m,s}}$$

#### Two key parameters that influence the conductance

 $\Delta U$ : Difference of Coulomb interaction between magnetized and non-magnetized Pt atom.

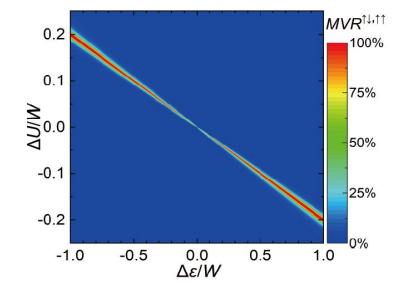
 $\Delta \varepsilon$ : Difference of nuclear potential energy between magnetized and non-magnetized Pt atom

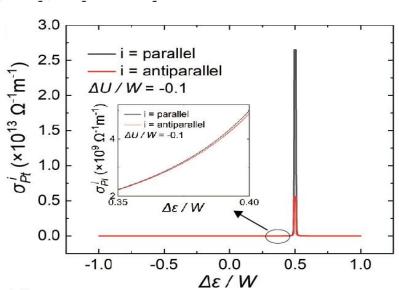

## **Parameter**


TABLE I. Parameters of YIG/Pt/YIG used in the simulation.

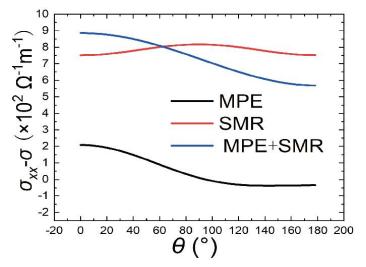
| Parameters                           | Symbol          | Value                                 |
|--------------------------------------|-----------------|---------------------------------------|
| Magnetized atoms' magnetic moment    | $\mu_0$         | $0.2\mu_B$ [21, 22, 41]               |
| Characteristic length of the MPE     | $d_0$           | 0.4 nm [21]                           |
| Gilbert damping constant of YIG      | α               | 0.001 [28]                            |
| Electrons and magnons coupling       | η               | 8 [29]                                |
| On-site energy of YIG                | $\varepsilon_i$ | 1 eV [9, 30, 31]                      |
| Nearest neighbor transition energy   | $t_{ij}$        | -0.4 eV [9, 30, 31]                   |
| Spin Hall angle of Pt                | $\theta_{SH}$   | 0.01 [32]                             |
| Conductivity of Pt                   | $\sigma$        | $10^7 \Omega^{-1} m^{-1}$ [33]        |
| Spin diffusion length of Pt          | $\lambda_{sd}$  | 1.5 nm [34]                           |
| Length of Pt                         | l               | $100~\mu$ m                           |
| Width of Pt                          | w               | $10 \mu \text{ m}$                    |
| Thickness of Pt                      | t               | 2 nm                                  |
| Real part of spin mixing conductance | $G_r$           | $10^{15} \ \Omega^{-1} m^{-2} \ [35]$ |

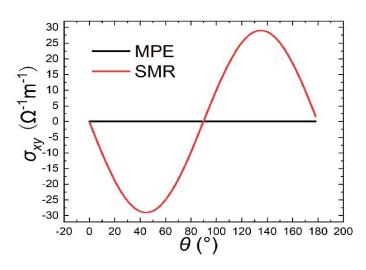
The distribution of magnetized atomic propotion and magnetic moments in


each sublayer: YIG/Pt(2 nm)/YIG

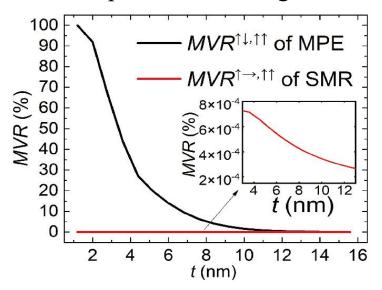






# Magnon valve ratio


$$MVR^{\uparrow\uparrow,\uparrow\downarrow} \equiv \left(\sigma_{xx,\uparrow\uparrow} - \sigma_{xx,\uparrow\downarrow}\right)/\sigma_{xx,\uparrow\uparrow}$$






The influence of spin Hall magnetoresistance(SMR)





The dependence of magnon valve ratio on the thickness of Pt layer



As t increases, the MVR exhibits an exponential decay.

# **Summary and perspective**

- Based on the second quantization and non-equilibrium Green's function method, we propose a framework for calculating the transport of magnon currents in bipartite magnetic insulators and magnonic junctions [1].
- Based on the magnetic proximity effect (MPE), we propose a theory of magnetic sensing in magnetic insulator heterostructures [2].
- The external layer of magnon valve need to be magnetic insulator, such as **YIG**, **GdIG**, **TmIG**, middle layer needs to have the MPE, and the materials currently reported to both be conductive and have the MPE are such as **Pt**, **graphene**, **WSe**<sub>2</sub>.

<sup>[1]</sup> **Tianyi Zhang** and Xiufeng Han, Phys. Rev. B **108**, 104421 (2023).

# Acknowledgement

感谢: 韩秀峰研究员 于国强研究员

万蔡华副研究员 丰家峰副研究员

尹林高级工程师 及MO2组所有成员!